


International Journal of Mass Spectrometry 218 (2002) 197-198



www.elsevier.com/locate/ijms

## Erratum

## Erratum to "Discovery and characterization of atmospherically relevant inorganic species by structurally diagnostic mass spectrometric techniques" [Int. J. Mass Spectrom. 212 (2001) 403–411]☆

Fulvio Cacace

Dipartimento di Studi di Chimica e Tecnologia della Sostanze Biologicamente Attive, University of Rome La Sapienza, P. le Aldo Moro 5, 00185, Rome, Italy

The publisher regrets that in the above article a number of errors were introduced and apologizes for any confusion or inconvenience this may have caused. The corrections are now given below.

Abstract, sentence 1, page 403:

The role of structurally diagnostic techniques such as Mass-analyzed Kinetic Energy (MIKE), Collisionally Activated Dissociation (CAD), Neutralization Reionization (NR) and Fourier-Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, complemented by theoretical calculations, in atmospheric chemistry is illustrated by representative examples.

Section 2, paragraph 3, sentence 1, page 405:

Well-defined ion-molecule clustering reactions were used in the Chemical Ionization (CI) source of a multisector mass spectrometer of the Electrostatic-Magnetic-Electrostatic-orthogonal Time of Flight (EBE o-TOF) configuration to obtain  $(H_2O \cdot O_2)^+$  or  $(H_2O \cdot O_2)^-$  adducts, each of which was mass selected and assayed by NR<sup>+</sup> and NR<sup>-</sup> mass spectrometry.

Section 4, paragraph 1, sentence 7, page 408:

A clue to the process responsible for the formation of N<sub>2</sub>O<sup>•+</sup> is provided by the presence in the N<sub>2</sub>/O<sub>3</sub> CI spectrum of a [N<sub>2</sub>O<sub>3</sub>]<sup>+</sup> adduct of m/z = 76 which, shifts to 78 when <sup>15</sup>N<sub>2</sub> is used.

Fig. 3 was also mistakenly presented as Fig. 2 which had been omitted, both figures are now correctly reproduced on the following page.

 $<sup>^{\</sup>diamond}$ PII of the original article: S1387-3806(01)00444-4.

E-mail: fulvio.cacace@uniroma1.it

<sup>1387-3806/01/\$ –</sup> see front matter © 2001 Published by Elsevier Science B.V. PII S1387-3806(02)00712-1

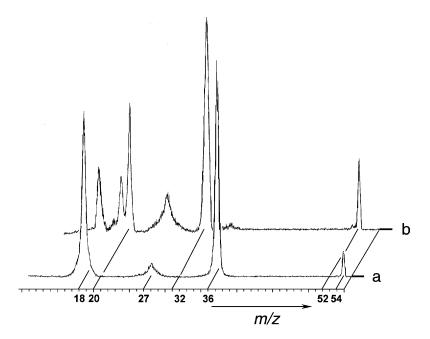



Fig. 2.  $^+NR^+$  spectrum of the  $(H_2O \cdot {}^{18}O_2)^+$  ion, m/z = 54 (a) and of the  $(H_2{}^{18}O \cdot O_2)^+$  ion, m/z = 52 (b), both displaying 'recovery' peak at the expected m/z ratios. (Reproduced by permission of Angew. Chem. Int. Ed. Engl.).

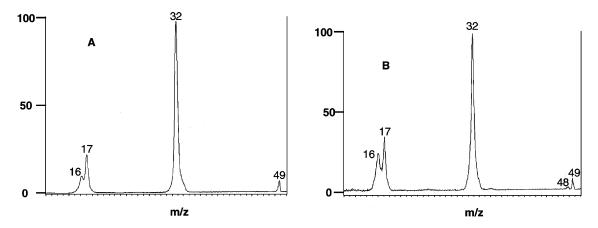



Fig. 3. (A) NR<sup>+</sup> spectrum of HO<sub>3</sub><sup>+</sup> ions, m/z = 49, kinetic energy 4 keV. Neutralizing and reionizing gas Xe and O<sub>2</sub>, respectively. (B) NR<sup>-</sup> spectrum of HO<sub>3</sub><sup>+</sup> ions, kinetic energy 8 kV, neutralizing and reionizing gas CH<sub>4</sub>. (Reproduced by permission of *Science*).